Interconnect Systems: Challenges for Nanoelectronics

Thomas Gessner
Professor for Microtechnology at Chemnitz University of Technology
Center for Microtechnologies
FhG-IZM Department Micro Devices and Equipment
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK ?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

Implementation of new materials in the CMOS process & challenges

Challenges

- risks of new failure modes have to be understood
- customer reliability requirements have to be met

Materials

Source: E. Zschech, AMD Saxony
Modifications: T. Gessner et al., TU Chemnitz
Interconnect Systems: Challenges for Nanoelectronics

New metrology in the CMOS manufacturing & challenges

Challenges

- monitor the right parameters
- have the metrology available on time

Source: E. Zschech, AMD Saxony

Modifications: D.R.T. Zahn et al., TU Chemnitz

Year

Materials

Optical microscopy SEM TEM SIMS AES TOF-SIMS FIB XRR/XRD Raman FTIR ?

AFM-based techniques: SCM, FM/UFM, MicroRaman NanoRaman

LEAP

TEM/STEM/SEM

Cs corr

STM

Scatterometry

Spectroscopic Ellipsometry/Porosimetry

Nanoindentation / SAW

Source: E. Zschech, AMD Saxony

Modifications: D.R.T. Zahn et al., TU Chemnitz
Interconnect Systems: Challenges for Nanoelectronics

How to Fight RC Delay: Design, Architecture, Technology

SEM cross-section of AMD Opteron™ and AMD Athlon™64 microprocessors, showing the 9-metal interconnects hierarchy (IEDM 2003, Nanofair 2003)

Low k material as IMD

Hierarchical wiring (reverse scaling)

Photo courtesy: E. Zschech, AMD, Dresden, Germany
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

Fabrication of Copper Damascene Interconnects

Trench etched into dielectric

- barrier deposition
- Cu seed layer deposition
- Cu fill
- CMP
Interconnect Systems: Challenges for Nanoelectronics

Potential barrier/seed approaches

Available Deposition Processes

- Physical Vapour Deposition (PVD: sputtering, evaporation)
- Chemical Vapour Deposition (CVD)
- Atomic Layer Deposition (ALD)
- Electroless plating

Potential barrier/seed layer approaches

- ALD TaN / PVD Ta / PVD Cu seed
- ALD TaN / CVD Ru seed (direct plating)
- CVD barrier / ALD Cu seed

- WN: example for CVD barrier
 - ALD barriers
Interconnect Systems: Challenges for Nanoelectronics

Equipment for TiN/Cu or W(Si)N/Cu CVD

PRECISION 5000™ configuration

- Chamber A: Cu - MOCVD
- Chamber B: WNₓ PECVD
- Chamber C: TiN - MOCVD
- Chamber D: preclean

Process for WNₓ:
PECVD based on \(WF_{6} + N_{2} + H_{2} \)

Available parameters:
- Temperature: 300 - 475°C
- Pressure: 0.1 - 5 Torr
- RF power: 50 - 750 W
- \(WF_{6} \) flow: 100 sccm
- \(N_{2} \) flow: 280 sccm
- \(H_{2} \) flow: 1000 sccm
Interconnect Systems: Challenges for Nanoelectronics

10 nm WN Barrier Characterisation / as deposited

- XTEM images of WN$_x$3
 -> Amorphous microstructure
- Electron diffraction pattern of WN$_x$3
 -> Only diffuse rings; reflection spots from a Cu grain

TEM and Electron Diffraction
Comparison of the as deposited state with the state after 400°C/100h

- No significant structural changes
- Barrier remains amorphous
Interconnect Systems: Challenges for Nanoelectronics

Atomic Layer Deposition of WCN barrier films

Application of ALD to barrier films

Advantages:
- Highly conformal deposition
- Controlled thickness
- Extremely thin films
- Excellent thickness uniformity

Disadvantages/Challenges:
- Surface sensitivity
- Cost-effective only for very thin films
- For porous and part of low-density low-k materials only applicable at sealed surfaces

Li et al. (ASM, Philips), IITC 2002
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

Size effect of interconnect resistivity

W. Hönlein, E. Unger, W. Pamler, Z. Gabric
L. Risch
G. Braun
R. Göttzsche, N. Brüls
H. Wendt
I. Janssen, K. Schober
H. Helneder, U. Seidel
K. Mosig **

**assignee @ International Sematech, Austin, TX

M. Engelhardt et al., Infineon Technologies AG, Corporate Research

SIEMENS
C. Werner
T. Ohnemus

International Sematech
G. Gebara

ZFM *
IZM
T. Geßner
S. Schulz
R. Ecke

*cooperation contract with IFX
Interconnect Systems: Challenges for Nanoelectronics

Size effect of interconnect resistivity

Nano Interconnects (E-beam litho + IMD etch + TiN/Cu CVD)

E-beam lithography and IMD etch: Infineon CPR NP
Metallization (CVD TiN and Cu): Center for Microtechnologies @ TU Chemnitz

M. Engelhardt et al., Infineon Technologies AG, Corporate Research
Interconnect Systems: Challenges for Nanoelectronics

Size effect of interconnect resistivity

Nano Interconnects (Sub-50nm) with high AR (DUV litho & spacer mask)

M. Engelhardt et al., Infineon Technologies AG, Corporate Research
Interconnect Systems: Challenges for Nanoelectronics

Size effect of interconnect resistivity

- Barrier thickness reduction
- Interface engineering (reduce interface scattering)
- Cu morphology optimisation (increased grain size, reduced grain boundary scattering)

Resistivity \([\mu \Omega \text{ cm}] \)

Resistivity \((\text{Cu}_{\text{bulk}}) = 1.7 \mu \Omega \text{ cm} \)

Measurements:
- Lines \((L = 200 \mu \text{m}) \)
- Serpentines

Line Width \([\text{nm}]\)

M. Engelhardt et al., Infineon Technologies AG, Corporate Research
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK ?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

ITRS Low k_{eff} - Predictions for Cu – Interconnects with low k

Graph showing the average K_{eff} for Cu-interconnects over time from 1998 to 2018.
Interconnect Systems: Challenges for Nanoelectronics

Ultra low k (materials) concepts

- **dense films**
 - Minimum bulk $k > 1.9$
 - In praxis > 2.2

- **porous films**
 - Inherent porosity or introduced by porogens
 - shape of pores,
 - connectivity,
 - pore size distribution
 - (micro $< 2 \text{nm}$, meso $< 50 \text{nm}$)
 - \Rightarrow silica based materials
 - \Rightarrow silsesquioxanes (SSQ)
 - \Rightarrow organic polymers
 - \diamondsuit CVD or spin-on

- **air gaps**
 - Potential of $k_{\text{eff}} < 2.0$
 - Design adaptations needed

How much porosity is needed?
How much porosity can be controlled?

Graphical representation:
- $E \sim \rho^{3.7}$ for porous SiO2
- EMA-model, series and parallel model
- Permittivity vs. porosity in vol% and elastic modulus in GPa

Interconnect Systems: Challenges for Nanoelectronics

Low k dielectric materials: porous films

<table>
<thead>
<tr>
<th>Material</th>
<th>Class</th>
<th>Deposition</th>
<th>k</th>
<th>characteristics</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoglass</td>
<td>porous SiO₂</td>
<td>spin on</td>
<td>(2.5...)2.25(... 1.3)</td>
<td>structured porosity (templating)</td>
<td>Allied Signal</td>
</tr>
<tr>
<td>ORION™</td>
<td>C-doped OSG</td>
<td>CVD</td>
<td>2.0-2.2</td>
<td>pore size 1-4nm density 1.04g/cm³</td>
<td>Trikon</td>
</tr>
<tr>
<td>porous SiLK™</td>
<td>aromatized and cross-linked polyphenylene</td>
<td>spin on</td>
<td>2.2-2.0</td>
<td>aver. pore size 6...4nm, pore size distribution range 1..7nm</td>
<td>Dow Chemical</td>
</tr>
<tr>
<td>ZIRKON™</td>
<td>MSQ</td>
<td>spin on</td>
<td>2.2..1.8</td>
<td>small, uniformly distributed pores</td>
<td>Shipley</td>
</tr>
<tr>
<td>LKD 5107</td>
<td>MSQ</td>
<td>spin on</td>
<td>2.2 1.9</td>
<td></td>
<td>JSR Micro</td>
</tr>
<tr>
<td>LKD 6103</td>
<td>MSQ</td>
<td>spin on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra Aurora</td>
<td></td>
<td></td>
<td>2.7..2.5 (2.2)</td>
<td>pore size ~0,5nm</td>
<td>ASM</td>
</tr>
<tr>
<td>CORAL™</td>
<td>SiOC - carbon-doped oxide</td>
<td>Non-PECVD</td>
<td>1.7</td>
<td>structured porosity, very high hardness</td>
<td>Novellus Systems</td>
</tr>
<tr>
<td>FOx™</td>
<td>HSQ</td>
<td>spin on</td>
<td>2.9</td>
<td>microporous</td>
<td>Dow Corning</td>
</tr>
<tr>
<td>BD2</td>
<td>porous SiCOH</td>
<td>CVD</td>
<td>2.5</td>
<td></td>
<td>AMAT</td>
</tr>
</tbody>
</table>

Interconnect Systems: Challenges for Nanoelectronics

Materials properties vs. density/porosity

- thermal conductivity vs density
 - \(\lambda = 0.0006 \rho^{0.44} \)
 - \(R^2 = 0.9881 \)

- permittivity vs density
 - trend (power law)
 - LKD JSR, Aerogel TUC

- elastic modulus vs density
 - LKD JSR, Aerogel TUC

the higher the porosity and the lower the density, the lower stiffness and thermal conductivity

increase of thermal and elastic stress during processing and use; serious mechanical issues for CMP and packaging
Interconnect Systems: Challenges for Nanoelectronics

Issues of porous low k material in Cu DAMASCENE architecture

- Mechanical stability for metal CMP
- Leakage current sensitive
- Adhesion
- Post via etch clean
- Interface barrier/low k: pore sealing; Impact of etching, stripping on ULK properties;
- Dielectric barrier + cap layer
- Etch stop layer
- Porous film or CVD dielectric (SiO₂ or SiCOH)
- Porous film

Packaging: Mechanically weak dielectric materials (polymers, porous) → supporting patterns
Heat dissipation: Low thermal conductivity dielectric materials → Cu dummy patterns (heat sinks)
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

On the Road to lower the k-value of Dielectrics in Cu Interconnects

- Fluor or hydrogen doped SiO$_2$
- Low K: carbon doped SiO$_2$ or organic polymer
- Ultra Low K: Porous SiOC, porous organic polymers

Air gaps (air cavities) = The ultimate solution with conventional interconnects

Dielectric constant

Technological node

- 130 nm
- 90 nm
- 65 nm
- 45 nm
- 32 nm

K = 1

Air gaps

3.8 2.9 2.5 <2.2
Interconnect Systems: Challenges for Nanoelectronics

Integration of Porous ULK faces Multiple Challenges

- **Stack deposition:** Plasma treatments for adhesion enhancement
- **Litho:** Resist poisoning, cap layer needed
- **Etch:** Profile (e.g. bowing) and roughness, Low k Modification
- **Strip and clean:** Low k modification
- **Barrier:** Pore sealing, etc.
- **Cu CMP** Adhesion, cracking, collapsing

& architecture for Dual Damascene integration
 e.g. Special hard mask approaches

→ New ULK for every technology node !!

Air gaps requirements: simple, cheap, reliable and scalable
Interconnect Systems: Challenges for Nanoelectronics

Airgap Approaches:

- Sacrificial Layer
- Sacrificial Etch
- Decomposition
- Formation by Deposition
 - Nonconformal CVD
 - Selective CVD
Interconnect Systems: Challenges for Nanoelectronics

Airgap Approaches:

- Sacrificial Layer
- Sacrificial Etch
- Decomposition

Formation by Deposition:
- Nonconformal CVD
- Selective CVD

Seed layer, nitride, O/TEOS, copper, base layer.
Interconnect Systems: Challenges for Nanoelectronics

Airgap Approaches:

- **Formation by Deposition**
 - Nonconformal CVD
 - Selective CVD

<table>
<thead>
<tr>
<th>Sacrificial material</th>
<th>Permanent material</th>
<th>Removal technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer/resist</td>
<td>p-SiLK/SOG</td>
<td>thermal annealing in N₂</td>
</tr>
<tr>
<td>Unity sacrificial polymer</td>
<td>SiO₂</td>
<td>thermal annealing in N₂</td>
</tr>
<tr>
<td>Carbon</td>
<td>None or SiO₂</td>
<td>thermal annealing in O₂</td>
</tr>
<tr>
<td>SiO₂</td>
<td>SiLK/SiOC/SiC</td>
<td>HF etching</td>
</tr>
</tbody>
</table>
Interconnect Systems: Challenges for Nanoelectronics

Airgap Approaches:

- Sacrificial Layer
 - Sacrificial Etch
 - Decomposition
 - Polymer/Resist

Formation by Deposition
- Nonconformal CVD
- Selective CVD

75% of IMD is Air Gap

Interconnect Systems: Challenges for Nanoelectronics

Airgap Approaches:

- Sacrificial Layer
 - Sacrificial Etch
 - Removal through defined patterns (patterned mask, spacers, etc.)
 - Decomposition
 - Removal through porous or low density capping layers
 - Removal of SiO$_2$ sacrificial layer by using buffered HF wet etch solution
- Formation by Deposition
Interconnect Systems: Challenges for Nanoelectronics

Air Gap Integration using Buffered HF @ TU Chemnitz – ZfM: Approaches

Process Description

Application of a **SACRIFICIAL PECVD SiO\textsubscript{x}** film, finally removed by a **WET ETCH PROCESS** using buffered HF acid

Access control by **HARD MASK** and HF acid **EXPOSURE TIME**

- **Air Gap via MASK**
 - Patterned hard mask defines areas for wet etching attack
 - Wet etching process is aligned by copper lines, a cap- and a sub-layer

- **Air Gap via SPACER**
 - Access to IMD by spacer application
 - Spacer is situated between IMD and copper lines
Interconnect Systems: Challenges for Nanoelectronics

Air Gap Integration using Buffered HF @ TU Chemnitz – ZfM: Results

Feasibility for both approaches successfully proven
Interconnect Systems: Challenges for Nanoelectronics

Air Gap Integration: Process Integration Challenges

A Local integration is required

– where best electrical performances are necessary
– allows mechanical strength (CMP, Packaging)

Permanent material

Air gaps

Permanent material

Standard Performances Packaging

Cu interconnects

M7-M9

M1-M6

W plugs and active regions
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK ?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

SEM picture of 10-level dual-Damascene structure fabricated using SILK™ at the lower levels of multilevel interconnects
(T. Ohba, Fujitsu Sci. Tech. J., 38, 1, 2002, Study of current Multilevel Interconnect Technologies for 90 nm and Beyond)

Geometric dimensions of the interconnection system (MPU)

Cross sections of the metallization systems used for simulation (scaled).
Interconnect Systems: Challenges for Nanoelectronics

Interconnect Cooling by Heat Sinks

Global lines above unoccupied lower metal levels \(j = 0.5 \text{ MA/cm}^2 \)
Interconnect Systems: Challenges for Nanoelectronics

1. Introduction / Interconnect challenges
2. Diffusion barriers
3. Size effect of interconnect resistivity
4. Porous low k dielectrics
5. Airgap architecture – Key to solve ULK?
6. Thermal issues
7. Conclusions
Interconnect Systems: Challenges for Nanoelectronics

Conclusion

- Nanotechnology in Nanoelectronics is not only due to shrinking dimensions:
 - for interconnects: nanoscale effects like diffusion through ultrathin barriers; dielectrics with 0.5 to 3.0 nm pores – diffusion and conduction/leakage mechanisms; atomic layer deposition gains importance; size effects of conduction in nanoscale interconnects
- Ultrathin barriers available by CVD or ALD – integration is the challenge (especially with CMP & porous ULK dielectrics)
- The favorite ultra low k material is not defined yet – integration issues have been delaying the application for years; $k_{\text{eff}} < 2.5$???
- Airgap is a very promising aproach to achieve $k_{\text{eff}} < 2.5$ (even < 2.0) but needs design adaption
- Special design precautions have to be considered to solve thermal issues associated with low thermal conductivity materials (ULK, Airgaps)
- The farer future (> 2015) calls for special nanotechnology interconnect approaches (nanowires, CNT, ...)
Interconnect Systems: Challenges for Nanoelectronics

Acknowledgement

- Staff of Center for Microtechnologies of TUC and Fraunhofer IZM, especially:
 - Stefan E. Schulz: Copper and low-k integration
 - Knut Schulze: Airgap development
 - Ramona Ecke: CVD Barrier investigation
 - Swantje Fruehauf, Frieder Blaschta, Knut Schulze, Knut Gottfried, Jens Bonitz: porous ULK integration, CMP, Low-k etch & strip, pore sealing investigations
 - Dr. Hermann Wolf, Reinhard Streiter: Simulation
 - Annekatrin Delan, Michael Rennau: electrical measurements incl. thermal conductivity
 - Monika Henker: SEM
- Dr. Hans-Juergen Engelmann (AMD Saxony LLC & Co. KG) for XTEM and EDX/EELS analysis
- Dr. Ehrenfried Zschech (AMD Saxony LLC & Co. KG): AMD Cu interconnects TEMs & strategic discussions
- Support by EC (ULISSE, NanoCMOS), BMBF and DFG